
Building Hybrid Rover Models for NASA: Lessons
Learned

Thomas Willeke’ and Richard harden2

Abstract. Particle filters have recently become popular for diag-
nosis and monitoring of hybrid systems. In this paper we describe
our experiences using particle filters on a real diagnosis problem, the
NASA Ames Research Center’s K-9 rover. As well as the challenge
of modelling the dynamics of the system, there are two major issues
in applying a particle filter to such a model. The first is the asyn-
chronous nature of the system-observations from different subsys-
tems anive at different rates, and occasionally out of order, leading to
large amounts of uncertainty in the state of the system. The second
issue is data interpretation. The particle filter produces a probabil-
ity distribution over the state of the system, from which summary
statistics that can be used for control or higher-level diagnosis must
be extracted. We describe our approaches to both these problems, as
well as other modelling issues that arose in this domain.

1 Ln_trc?anrt;nn
Diagnosis is of great importance for many current and planned
NASA missions. Unfortunately, classical approaches such as Living-
stone [101 are very hard to apply to many of the systems currently be-
ing deployed, or planned for future missions. In particular, attempts
to apply these approaches to planetary rovers have been notably un-
successful, due to the considerable intemction between a rover and
its environment and the consequent difficulty in discretizing the ob-
servations, and producing a discrete rover model-as required by
Livingstone-that is capable of making useful diagnoses.

Over the past several years we have been developing algorithms
to perform hybrid diagnosis on-board a rover. Since a discrete model
appears to be impractical, we have developed new models using a
hybrid discrete-continuous representation of the rover, and applied
hybrid diagnosis algorithms based on particle filters[3] to them. This
paper reports on the complexities of the modelling task and some
lessons we have learned while making our first high-fidelity models
of the rover behaviour and testing standard particle filtering alg@
rithms on them.

Figure 1 shows the K-9 rover testbed at NASA Ames Research
Center, on which these experiments were run. K-9 is a six-wheeled
rover of the same class as the MER rovers currendy exploring Mars,
although with considerably more on-board processing power. It has a
number of subsystems including the locomotion system (the wheels,
suspension, driving and steering motors), an instrument arm (visible
folded up under the solar panels on the right hand side in the figure),
the pan-tilt head and cameras (top of figure), and the power subsys-
tem. Eventually we plan to have a model of all of these, but at present

Q S S Group Inc. I NASA Arnes Research Center. M.S. 269-3, Moffett Field,
CA 94035-1000 USA. twdleke9emallarmaragov
RIACS I NASA Ames Research Center, M.S. 269-3, Moffen Field, CA

___ ~ ~ - 9 4 u 3 5 - f 0 8 0 U S M d ~ * m 7 ~ - - ~ -

Figure 1. The K-9 rover.

the model only looks at the locomotion system and receives sensor
data from the wheels and the suspension (shown in detail in Figure

Figure 2 shows the standard particle filter algorithm that we will
discuss in this paper. While more sophisticated variants such as Raa-
Blackwellized particle filters [2, 51 and the Gaussian particle filter
[4] have also been applied to rover diagnosis [l], they currently don’t
handle the continuous-time approach we have found it necessary to
adopt for this model (see Section 3). The algorithm consists of three
main steps that are performed at each lime-step. The first (Step 3.(a)i
and ii in the Figure) is the Monre Curb step, where each sample is
projected into a possible future state in a stochastic manner. Follow-
ing this is the re-weighing step (Step 3.(a)iii), in which we condition
on the observations of the new state by re-weighting each of the sam-
ples by how likely it is that the observation could be generated from

3).

the state-regresented by-thatsample.-F- srep--.

I

(Step 3.(b)), new samples are created by sampling from distribution
induced by the weighted samples-the new samples are all copies
of the old ones, and the probability of each sample being copied is
proportional to its weight

1. For N particlesp('), a = 1, . . . , N , sample discrete modes

2. For each particle p(') , sample zp' from the prior

3. for each time-step t do

z$', from the prior ~ (~ 0 1 .

P(X0Iz:)).

(a) For each particlep(1) = (zit ' , , ~ (z) * - ~) do
i. Sample a new mode:

ii. Sample new conhnuous parameters:

iii. Compute the weight of particle $('):

@) Resample N new samples p(') where:

p - P(Z,lz;").

$) P(X I -(i) ,(a)
f zt 7 t-1).

w p t- P (y * p , Q) .

p(p (i) = j j (k)) o: wjk)

Figure 3. The suspension on the K-9 rover. The front of the rover is on the
left. wit the first two wheels attached to the bogey, which is in nun attached

to the rocker, and then to the rover chassis.

Figure 2. The particle filtering algorithm.

While the algorithm is conceptually simple, building a suitable
hybrid model of the rover, and applying the algorithm to the model
both turn out to be quite complex tasks. Although we won't discuss
it here in detail, finding suitable differential equations to describe the
system behaviour is very timeconsuming and difficult. More signif-
icantly, the realities of applying diagnopis to the rover necessitated
many changes both to the model, and to the way the algorithm was
applied.

The software architecture used on-board the rover'is CLARAty
[7], which is a hierarchical architecture under which subsystems are
kept as independent as possible, and communicate with one another
only by messages travelling up and back down the hierarchy. In this
respect, CLARAty seems quite typical of generic robotics architec-
tures currently in development However, this has two si,~ficant ef-
fects for a diagnosis system. Firstly, the system must inteagate data
from sensors in different subsystems, and it is quite possible for tbese
sensors to deliver data at different rates, and secondly, the system
must provide diagnosis data for subsystems that can be passed up the
CLARAty hierarchy to be used for control decisions, or even poten-
tially as inputs to other, higher-level diagnosis algorithms. The first
of these issues necessitates the use of a continuous-time model and
methods to handle asynchronously arriving data. We discuss the im-
plications of this in Section 3. The second, along with the fact that
particle filters produce as their output probability distributions over
the states of the system, requires novel ways to summarise the out-
put from the filter, as the full probability distribution is far too large
to reasonably deliver to either a control algorithm or a more abstract
diagnosis algorithm as an input. We discuss possible solutions to this
problem in Section 4.

2 Model Overview

Our long term goal for $s model is to be able to track many dif-
ferent faults across multiple subsystems of the rover. To that end,

_ _ ~ ~~ ~- - - ~ ~ ~~ ~~~~ ~

2

we have started by building a model that tracks normal driving over
different terrain and tracks one class of faults. Currently, the model
has 18 binary discrete variables and 30 continuous variables: Each
0;

TERRAIN, and SPEEDSENSOR. Each wheel alS0 has three continu-
ous variables: BASELINE, HEIGHT, and SPEED, and two observable
variables: 0BS.SPEED and OBS-HEIGHT.

six -*-he& h% 3 Ezz-,. $&&Te:e $'Ate ...&+;,sb!e.: DPIV!NC.,

The continuous variables capture the basic motion of the rover.
Before understanding the parameters themselves there are a some as-
pects of the rover that must be discussed. The rover employs a rocker-
bogey suspension system for its six wheels, as shown in Figure 3.
The two front wheels on either side are attached to the bogey, which
swings freely around its centre, where it is attached to the rocker. The
rocker in turn can pivot around the differential axle which is attached
to the rover chassis. The only position information we have about
the wheels comes from the two bogey angles (the angle between the
bogey and the rocker) and the differential axle (there are also steer
angles for each wheel that we plan to add to the model, but are cur-
rently ignored). The differential axle guarantees that the chassis of
the rover will always be centred between the wheels, and thus these
three angles are sufficient data to calculate the heights of the wheels
relative to the chassis of the rover. There are two difficulties to con-
sider. First, due to the differential axle, there is an ambiguity between
situations where the rover has its left wheels high on a rock versus its
right wheels down in a hole. Looking only at the angle information,
these situations look exactly the same, and ultimately will require in-
tegrating inertial information to disambiguate. The other difficulty is
that a slight calibration error or measurement noise in the differential
axle at the rear of the robot can by ma,gified by the long lever arm of
the rocker and bogey smctures to create a substantial change in mea-
sured heights at the front wheels. We found that every time we tested
the rover, and looked at the wheel heights, they seemed substantially
different. We postulated that there were slight calibration errors in
the differential axle each day caused by lifting and transporting the
iouz f rmnthdab uzthesimulationmars-yard. Asaresul&Ls c a L
ibration error and resulting large change in measured wheel heights,
we could not use simple threshold values on the height of the wheels
to categorise their position or the terrain.

With these issues in mind we designed the model to be self cali-

I

Figure 4. Dynamic Bay- network representation of the current mver
model for a single wheel. ’Ihc variables on the left represent the state at t h e

t , andon the right time t + 1.

brating. The BASELINE parameter is the calibration of the wheel for
each run, giving an approximate idea of where the wheels neutral
“zero” position should be in relationship to the chassis of the robot.
As a result, the HEIGHT parameter, which is the wheels height above
(or below) that BASELINE, is a much better behaved (calibration in-
dependent) variable and can be used to infer information about the
terrain that the rover is traversing. Finally, the SPEED parameter is
simply the speed of the wheel. The SPEED parameter is used as a
multiplier in the differential equations governing the HEIGHT param-
eter. This follows from the intuition that the faster the rover is moving
the greater the potential change in the height will be as it is capable
of climbing a larger rock in the same amount of time. It is also worth
mentioning that the speed of the wheel is not the same as the overall
speed of the rover. When the rover turns the speeds of wheels on o p
posite sides will be different, or possibly even completely reversed if
the rover is executing a p i n t turn.

The model contains two different types of discrete variable. The

of the rover while the TERRAIN variable is a somewhat arbitrarily
defined property of the environment that is added to aid in modelling
the system. The DRIVING variable tells us if the wheel is Sopped or
driving. As wen as representing a commanded rover mode, it also
prevents the BASELWE parameter value from drifting to match the
current height of a wheel when the rover is parked on top of a rock.
To achieve this, the differential equations in the stopped mode do

tells us if the robot is traversing reasonably flat ground, or rocky ter-
rain. This distinction is useful because the high volatility of height
values when the rover is traversing rocky ground makes it desirable
to limit how closely the parameters match the observed data. One
does not want the baseline, a critical calibration param-, to drift
off and mck a transitory signal caused by the rocky tenain. Fiially,
the SPEEDSENSOR failure state exists to capture the sitnation where
the rover is reporting a speed of zero yet is also reporting that its
wheel heights are changing. We have seen examples of this in the
data generated by the rover, and since the speed of the rover is used
in the model, we need to track those moments when the speed is
being inaccurately reported.

Figure 4 shows a dynamic Bayesian network representation of the
current model for a single wheel. As the figure shows, there are lots of
interactions between the variables inside the wheel model, but rela-

these will certainly grow as the model gets more complex, at present
we can mat the wheels almost independently, which considerably
improves the efficiency of the model by reducing the dimensionality
of the state space.

DRIVING and SPEEDSENSOR Variables represent OpXatiOnd modes

not allow the BASELINE parameter to change. The TERRAIN variable

tively f e w b e t w t x n ~ a b l e s i n d i f f ~ w h e e k ~ Bf ~

3

One failure that we plan to add to the model in the near future,
and that will require more connections between the wheel variables
is fondly referred to as “the Rover Rampant” failure. Under some
poorly understood circumstances the centre wheels dnve quicker
than the front wheels and end up pushing the front of the bogey up
into the air, with the result that the rover looks Wre the stylised lion
with its paws in the air from a medieval knights shield. This is a se-
rious fault with a rocker-bogey rover that has occurred in field ~ a l s .
To diagnose this will take a more general view of the whole rover
since each wheel is behaving correctly when taken in isolation, but
data from a number of wheels over time can be combined to detect
the fault.

3 Asynchronously Arriving Data

Traditionally, particle filters, as with most other filtering algorithms,
are viewed as discrete time step algorithms. This means that the
whole system moves forward in discrete chunks of time, with new
data arriving, the model updating by one cycle, and the process re-
peating. While this is conceptually easy to handle, it is unfortunately
at odds with the design of many robotic systems. The world itself is
asynchronous and robots often are too. One reason being that they
usually have many different sensors for measuring their environ-
ment, and each of those sensors will have different update frequen-
aes which are dictated by their hardware. In our case, the IC9 rover is
such an asynchronous rover, with the further complication that data is
sent from the control process to the diagnosis process over a CORBA
link. CORBA is a message passing service which is often used in
modular systems designs so that separate components (such as the
diagnosis and control modules) do not need to depend upon each
other and can be compiled as completely separate programs (a use-
ful feature when developing complex projects with large distributed
teams). However, this means that there are a number of steps between
a sensor making a measurement, the measurement getting recorded
and time stamped, the packet being pushed into the CORBA link,
and our diagnosis engine receiving the data and processing i t As a
consequence, data arrives a! variable rates, at Merent times from
different rover subsystems, and does not always arrive in proper tem-
poral order- While data h m a single source has no muble arriving
in sequence, sometimes we will get data from s o m A with a time
stamp of X and then get data from source B with a time just slightly
before X

Given this characteristic of the data, the diagnosis system needs
to be able to handle data that arrives in an asynchronous fashion.
One naive way to handle this is to keep the diagnosis system as a
discrete rime step algorithm and wait until data from each source
has anived, and then to run the diagnosis system though one step.
This only works if the data from each source is produced at a similar
frequency. If the frequencies are very different, do you wait for the
slow one, throwing away other data? What happens when one sensor
fails and stops producing any data? How long do you wait for the data
before giving up? Ultimately, whatever approach is used, the most
importantly question is, how do you run in real-time? What happens
if processing slows down and the system is handling data slower than
it is produced? Or, what does one do when the system is running fast
enough to handle all the data produced if it arrived evenly spaced, but
insmd d m a d i f f e r e n t sensors arrives almost simultaneouslv
followed by a long quiet spell?

We built our system with these real-time asynchronous questions
in mind. There are two branches of the real-time asynchronous data
problem: computational and algorithmic. The computational aspect

refers to all the problems of receiving and controlling the flow of
data, and ensuring that the real-time constraint is always met. The
algorithmic aspect refers to changes that occur to the model and
the particle filter algorithm in response to the introduction of asyn-
chronous data.

In order to handle the computational complexities we pass the ar-
riving data to the InputModel. The InputModel can be run in buffered
mode where it will guarantee that every piece of data will be pro-
cessed, but usually it is run in real-time mode. In this case, arriving
data is put into a separate bin for each sensor type and is labelled
as NewData. If there was data still in that bin, it simply gets over-
written - a sad loss, but necessluy to ensure that the model does not
fall behind in precessing the data produced by the rover. The particle
filter, in a separate thread, is constantly going sequentially through
these bins looking for NewData and processing it when it finds it
(and removing the NewDara label).

The more interesting changes happen when dealing with the algo-
rithmic aspects of asynchronous data. Our primary changes were to
parameterise the model on time and to perform forward prediction
based on the marginals probabilities of the observed sensor. These
changes have many interesting consequences which will be covered
in detail.

Parameterising on time involves computing the amount of time
between the new data and the last time the model was updated. This
value is then used as a scaling factor so that the model changes by
some amount proportional to the amount of time that has passed.
Unlike Kalman filters and other txacking algorithms, one major ad-
vantage of the standard particle filter is that it can be mn relatively
easily on a continuous-time model like this. If we moved to a more
sophisticated variant such as Rao-Blackwellized particle filters [I] or
the Gaussian particle filter 141, we would have to intepte the model
effects over time using a continuous-time Kalman film or some sim-
ilar approach.

3.1 Conditioning on the Observations

Once the model has been synchronised with the timestamp of the
data we condition on the observations by re-weighting the samples
as shown in Step 3.(a)iii. of the algorithm in Figure 2. In a tradi-
tional discrete-time particle filter one would have observations for
all the observable variables at this point and would simply calculate
the weight of the sample based on the full probability of the obser-
vations. In our case, we calculate the weight of the sample based on
the marginal probability of the available observed variables.

This change to re-weighting based on the marginal probabilities
has a number of important consequences. While one parameter is be-
ing re-weighted by the observations, all the other pammeters are free
to drift around according to the dynamics of the model until there
is an observation of them later. Figure 5 shows an example of this
effect. The probability that the rover is stopped tends to change as
observations of speed and wheel height alternately anive. When an
observation of wheel height anives, samples naturally change from
STOPPED to DRIVING or vice-versa due to the stochasticity in the
model, and since the distribution that results from the Monte Carlo
step of the particle filter is then marginalised on the 0BS.HEIGHT
variable, these samples seem quite plausible. When a subsequent ob-

predict that variable poorly.
Given that our choice of approaches to asynchronous data has led

to this problem, it is worth looking back and seeing if there are ways
to avoid it One alternative is to keep the algorithm as a time dis-

- -rervationofspeedaan, .-w- ethey

4

S C I -

...

..I ::1 - -

n.

Figure 5. Wheel speed over time for one of the wheels compared with the
probability that the wheel is stopped. ?he probability varies from step to step
because when there is no observation from the speed sensor samples tend to
move from the STOPPED to the DRIVING state (or vice-versa). When a am

observation arrives. the samples in the “wrong“ state die WL

Crete system and use the most recent observations from each sensor,
even if some of those observations have not updated for a while (this
amounts to padding the data with old observations). This is appeal-
ing, and would produce output that superficially looked cleaner since
it would not have the zigzag effect. Unfortunately, the consequences
of this are that you are forcing the model to continue to match the
last observation of the parameter in question, thus a majority of the
samples will have values close to that last observation. In reality the
parameter is Wcely changing over this new time, and when the new
data does arrive, most of the samples will be clustered around the old
data, meaning that fewer of them will match well to the newly arrived
data. On the other hand, with our method, the model keeps progress-
ing even if new data isn’t arriving for a while. Thus, the samples will
start to spread out into a growing error cloud, keeping them well dis-
tributed in the range of possible observations. Thus, when the new
observation arrives, there is a much higher likelihood that there is a
sample close to the new observation.

Another approach would be to only update (Le. forward pmhct)
the parts of the model for which data is arriving. This has the appeal
that the model doesn’t drift around much, instead only advancing
those parts of it that are seeing new data. But this results in a model
that is fractured across time. Since the purpose of the model is to
give a computational estimate of the current state of the rover, having
the model fractured back across time by different amounts for each
parameter would make it almost impossible to create any coherent
view of the state of the rover.

3.2 Frequency of Observations
So far in our discussion of asynchronous data arrival, we have gen-
erally been assuming that, within a certain bound, the frequency of
each individual sensor was fairlLc-omtant. What happens if we relax
this constraint and allow the frequency at which each sensor produces
data to vary widely, perhaps based on Werent operational modes of
the rover? It tums out that the K-9 rover does exactly this. When K-9
is moving, it produces information about its speed at a mplar fre-

-

. '

I -

quency, but when K-9 is stopped it produces speed data at a much
lower frequency (about a factor of 20 slower). This behaviour makes
sense since there is not much happening worth reporting as far as the
speed goes when the rover is stopped. But meanwhile, the height data
keeps arriving at its usual frequency. This ends up being a problem
since the model keeps updahng and, since there is nothing to pin the
speed values down, the model speed sfarts drifting away.

In some respects, there may be no good generalised solution for
this sort of problem: how can a model stay accurate if it simply is
not getting any data? Yet, in this case we were able to make some
safe assumptions. Since the rover always reports its speed data when
it is moving, it is safe to assume that if we have seen the rover stop,
and have not seen any new data about its speed, it is probably s t i l l
stopped. Following this logic, when we have seen the rover stop, and
then don't get any fresh speed data for a while, we start insexiing fake
(stopped) observations. This allows the model to nail down its speed
values and stop the drifting parameter.

+ + + +

3.3 Out of Order Data
We said above that we occasionally get data out of order. This is a
potential problem for any model. Fortunately, the data process on K-
9 is relatively fast, so data that arrives out of order is generally only
a few milliseconds old. Since we would like to include these obser-
vations in our model, we have come up with three methods to handle
this problem. The first is simply to run the model with a small delay,
long enough to ensure that all previous data has arrived. This works
well most of the time, but leads to a small delay in producing a di-
agnosis. It can also lead to problems when data arrives very close
together from differeat subsystems-the diagnosis system receives
new data while it is waiting, and then most wait again to ensure ev-
erything is ordered correctly. In practice this tends to resolve itself
quickly, but the potential for the system to block indefinitely is there,
and the likelihood will increase as more data from more subsystems
is incorporated into the model.

'The second approach we looked at is to simply run the model
backwards in time. Since the differential equations are all time-
parameteksed, this is relatively simple to do, although it may get
more difficult as the model complexity increases. It results in a state
estimate that is slightly older than the most recent observation, de-
spite the fact that that observation has been incorporated, so it isn't
an entirely accurate estimate of the current state. The opposite prob-
lem is encountered in our third approach, to simply change the time-
stamp on the out of order data to match the current time, and in-
corporate it. Again, this is relatively straightforward to implement,
but produces a small error in the resulting state. estimate. In practice,
these last two approaches tend to give very similar results, due to the
very small differences between the times of the out of orda data.

4 Data Interpretation

The point of any diagnosis system is to provide information about the
state or states the system is in at any moment. For a particle filter, as
with any approximation to Bayesian belief updating, this state infor-
mation will be in the form of a probability distribution over the pos-
sible states. For the discrete modes, this is fairly shaightforward. 'Ihe .
pab- systemisinso- s is simply the weiglued -
sum of all the samples in s divided by the weighted sum of all the
samples. However, for the continuous system parameters, this is not
quite so simple. The problem is that this is the marginal distribution
of a particular variable. To see why this is a problem, consider the

1s t -I

i t .
+ +

I f .
1 1 * ++. *+ * .

++ r+ * i f
f * + * + t' *++ * B T ~ + : ~ . . ~ . . * - rr.. +... * + t+*

x X C
- .rJ- 0 5 t +

+ +
+ f

OS I

Figure 6. Height graphed against Speed for all the samples. Samples in the
driving state are distinguished from those in the. stopped srate. The graph

shows the bimodal distribution of speed due to the discrete states.

driving speed of a single wheel. In a state where some of the samples
are in the stopped state, and others are in driving states, the speed of
the stopped samples is zero, while the speed of the driving samples
is much larger. Effectively the speed has a bimodal distribution, as
shown in Figure 6. If we simply compute the mean speed over a l l
the samples (taking the marginal distribution over speed), we get an
estimate of the speed of the wheel that is much lower than the mean
of the samples that actually have the wheel driving. In Figure 6 this
gives a mean speed of 0.05, compared with 0.34 for the samples in
the driving states alone.

The naive solution to this problem is to report the entire joint prob-
ability distribution as the output of the diagnosis algorithm. Unfortu-
nately, this consists of the complete set of particles, and is cIearly too
large to be practical. We need to select some appropriate summary
statistics to report, but the question is what is most useful.

We have looked at three main approaches. The first is simply to
report the median rather than the mean for the value of the continu-
ous variables. This actually works quite well for the example here (it
reports a speed of zero since most of the samples are in the STOPPED
state), but is rather unsatisfactoxy in general. One problem is that if
two states have approximately equal probability, the system may flip
between them, reporting a value first from one and then from the
other. A second problem is that we lose access to variance informa-
tion so we can't tell how confident the diagnosis is in its estimate of
a continuous parameter.

~~ The .othcz~vxaam.aches invo&e.axnmuting marrnmLs.per the
discrete states. In the fist, we simply repoa the marginal mean and
variance for each discrete state in the system. For example, at the time
shown in Figure 6, the following table would result (only a single
wheel, only the speed data, and no variance information is shown):

5

I "

,

Terrain
flat
flat
flat
flat

rocky
rocky
rocky
rockv

Driving

stopped
driving
driving
stopped

driving
driving

stopped

stopped

Sensor
fault
OK
fault
OK
fault
OK
fault
OK

#samples
8

412
3
82
21

419
3

52
0

0.38

This is probably more information than is really needed, especially
as there are 2" rows in this table for n discrete variables. A more
compact result is the 2n-row table that results from computing the
marginal for each discrete variable individually. In this case we get

rocky 0.04

stopped
Driving #samples Meanspeed

drivino 140 0.34
Sensor I #samples I Meanspeed
fault I 35 I 0

While this provides less infomarion than the previous approach, it
seems to capture the essence of the data, at least in this example,
and scales more reasonably as the model grows. Furthermore, the
structure of the Bayesian network in Figure 4 shows which marginals
are required, and may allow us to reduce the amount of data produced
by leaving out marpals for xuiables hat are unrelated.

5 Conclusions and Future Work
This paper presents a number of problems that we have encountered
in building a particle filter-based diagnosis system for a planetary
rover. In particular we discuss problems with model building, coping
with data that arrives asynchronously from sensors in different rover
subsystems, and potentially out of temporal order as well, and with
representing the output of the particle filter sufficiently compactly
for other algorithms to use. We offer possible solutions based on our
experiences to a number of these problems, although the solutions
we have adopted so far may not scale to larger models, or may be
superceded as our study of the problem continues.

One of the great advantages of the model-based discrete diagnosis
systems is the compositionality of theirmodels. While some progress
has been made on building compositional models of hybrid system
[6], and exploiting that sbucture in algorithms 181, there is much still
to be done to make these tools easy to use and effective in practice.

A second major problem as the model gets more complex is pa-
rameter tuning. Automated tools for building hybrid models are des-
perately needed, both user-interface type tools for describing the
models component by component, and linking them together, and
tools for automatically tuning the parameters of the model to best
match the data- For this second need, we are hoping for progress in
quantitative model leaning (for example, see [9]). possibly applied
in a supervised manner, where a user will pick out a set of data pro-

produce a model that matches that data.
FmaUy, the model we have described is still relatively prelimi-

nary, and we are actively adding both new fault modes, and new
sources of data and rover subsystems to it. One of the consequences

.--ins sing- ._

of this is that the number of samples needed to effectively estimate
the current state will continue to increase, leading to computational
issues. The obvious solution is to move to a more expressive repre-
sentation such as Rao-Blackwellized particle filters[2], or their non-
linear variants. which can si,gificantly reduce the number of samples
needed to effectively represent the current belief state, and hence the
computational requirements of the algorithm. However, as we dis-
cussed in Section 3, this leads to a number of problems with the
continuous-time nature of the model. Adapting these algorithms to
use continuous-time Kalman filters, or similar approaches will be-
come more critical as the model p w s . In our opinion, this is the
most challenging problem we face as we continue modelling the
rover.

Acknowledgements
Thanks to the K-9 team at NASA Ames Research Center for their
efforts to make K-9 available as a test-bed for our diagosis algo-
rithms, and for their support in integrating the algorithms into the
CLARAty architecture. This research is supported by funding from
NASA's Mars Technology Program, and the Intelligent Systems pro-
Pm.

REFERENCES
Nando de Freitas, Richard Dearden, Frank Huner, Ruben Morals-
Menendez, Jim Mutch, and David Poole, 'Diagnosis by a waiter and
a m m explorer', Invited paper for Proceedings of the IEEE, special
issue on sequential state esrimmion, (Mo3).
Amaud Doucet, Nando de Freitas, Kevin Murphy, and Stuart Russell,
'Rao-blackwellised particle atering for dynamic bayesian networks',
in Proceedings of the Sineeruh Conferwue on Uncertainty in Artijicinl
Intelligence, pp. 176-183, Stanford, (2OOO).
Sequeruial Monte Carlo in Pmctice, eds., Amaud Doucet, Nando De
Freitas, and Neil Gordon, Springer-Verlag. 2001.
Frank Huner and Richard Dearden, 'The gaussian particle filter for di-
agnosis of non-linear systems', in Proceedings of the Fourteenth Inter-
~ r i o ~ l Workshop on the Principles of Diagnosis, Washington, DC,
(2003).
Ruben Morala-Menendez. Nando de Freitas, and David Poole. 'Real-
time monitoring of complex industrial ~IUCCSSS with particle filters',
in Neuml Infomtion Processing System (NIPS), (2002).
Sriram Namsimhan, Model-based Diagnosis OfHybrii Systems, PhD.
dissemtioR Vanderbilt University, Nashville, TN, USA, August 2002.
LA. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and
Won So0 Kim, 'Claraty: An architecture for reusable robotic software',
in SPIE Aemsense Conference, Orlando, Florida, (April 2003).
Brenda Ng, Leonid Peshkin, and Avi Pfeffer, 'Factored particles for
scalable monitoring', in Pmceedings of the 18th Conference on Uncer-
t a i q in Amjicial h d i g m c e , Edmonton, (uw)2).
LjupEo Todorovski, SSo Diemski, Ashwin Srinivasan Jonathan
Whiteley, and David Gavaghan, 'Discovering the structure. of partial
differential equations from example behavior', in Proc. 17th Intern-
tional Conf: on Machine Learning, pp. 991-998. Morgan Kaufmann,
San Francisco, CA, (2OOO).
Brian C. Williams and P. Pandurang Nayak, 'A model-based approach
to reactive self-configuring systems', in Proceedings of the Thirteenth
National Conference on Amjicial Intelligence and Eighth Innovarive
Applications of Ar@cial Intelligence Conference, pp. 971-978. Port-
land, Oregon, (1996). AAAI Press / The MlT Press.

6

